Linear Inversion Transduction Grammar Alignments as a Second Translation Path

نویسندگان

  • Markus Saers
  • Joakim Nivre
  • Dekai Wu
چکیده

We explore the possibility of using Stochastic Bracketing Linear Inversion Transduction Grammars for a full-scale German–English translation task, both on their own and in conjunction with alignments induced with GIZA++. The rationale for transduction grammars, the details of the system and some results are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Systematic Comparison between Inversion Transduction Grammar and Linear Transduction Grammar for Word Alignment

We present two contributions to grammar driven translation. First, since both Inversion Transduction Grammar and Linear Inversion Transduction Grammars have been shown to produce better alignments then the standard word alignment tool, we investigate how the trade-off between speed and end-to-end translation quality extends to the choice of grammar formalism. Second, we prove that Linear Transd...

متن کامل

Linear Transduction Grammar Alignments as a Second Translation Path

Stochastic Bracketing Linear Tranduction Gramamrs are used to create an additional phrase table, which is used as a second translation path through a Phrasebased Statistical Machine Translation System. The rationale for transduction grammars, the details of the system and some results are presented.

متن کامل

Word Alignment with Stochastic Bracketing Linear Inversion Transduction Grammar

The class of Linear Inversion Transduction Grammars (LITGs) is introduced, and used to induce a word alignment over a parallel corpus. We show that alignment via Stochastic Bracketing LITGs is considerably faster than Stochastic Bracketing ITGs, while still yielding alignments superior to the widelyused heuristic of intersecting bidirectional IBM alignments. Performance is measured as the trans...

متن کامل

Translation as Linear Transduction Models and Algorithms for Efficient Learning in Statistical Machine Translation

Saers, M. 2011. Translation as Linear Transduction. Models and Algorithms for Efficient Learning in Statistical Machine Translation. Acta Universitatis Upsaliensis. Studia Linguistica Upsaliensia 9. 133 pp. Uppsala. ISBN 978-91-554-7976-3. Automatic translation has seen tremendous progress in recent years, mainly thanks to statistical methods applied to large parallel corpora. Transductions rep...

متن کامل

Unsupervised Transduction Grammar Induction via Minimum Description Length

We present a minimalist, unsupervised learning model that induces relatively clean phrasal inversion transduction grammars by employing the minimum description length principle to drive search over a space defined by two opposing extreme types of ITGs. In comparison to most current SMT approaches, the model learns a very parsimonious phrase translation lexicons that provide an obvious basis for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010